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Systems decompose in sets of interconnected nodes

Figure 1: Causal Graph for 
Crop Yield. 

Figure 2: Causal Graph for Net 
Ecosystem Calcification (NEC). 

Figure 3: Causal Graph for Prostate 
Specific Antigen (PSA) level. 



Setting and goal

● A causal graph (Directed Acyclic Graph - DAG).
● Observational data from all (non hidden) nodes.
● Ability of running experiments (in reality or in simulation).
● Cost of experiments depends on the number and type of nodes in which we intervene.

Goal: Efficiently find the optimal intervention to perform.

Intervention optimizing 
a target node in a 
graph.

Exploiting all available 
source of information.

E.g. In order to optimize the crop yield should we intervene on soil fumigants 
or on eel-worm population? If the optimal intervention is soil fumigants 
(intervention set), what level should we set them to (intervention level)?



Causal model and the do-calculus (1/3)

Causal Model :



Causal model and the do-calculus (2/3)

Intervention :

Post-intervention universe Observed universe



Causal model and the do-calculus (3/3)

Key question : How to do inference in the post-intervention universe.

● Intervene                  Interventional data           

● Observe                   Observational data                do-calculus

Do-calculus: algebra to emulate the post-intervention universe in terms of conditionals 
P(Y |X = x) in the observed universe.

Back-door adjustment



Take home messages

● Many real systems decompose in 
interconnected nodes. 

● Optimization of an experimental output 
requires “intervening” in the manipulative 
nodes. 

● Do-calculus allows “simulating” experiments 
with observational data.



● Optimal 
intervention set

● Optimal 
intervention level 

Exploring all possible 
interventions in a 
causal graph.

With the final 
goal of 
optimizing a 
target variable.

● and        are one possible intervention set and value.

● and         are the optimal intervention set and value.

Causal Global Optimization



Global Optimization Causal Global Optimization

Causal Global Optimization



● Target function is explicitly unknown and 
multimodal

● Evaluations are perturbed by noise
● Evaluations are expensive
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● Evaluations are perturbed by noise
● Evaluations are expensive

+ Causal Graph

Bayesian Optimization Causal Bayesian Optimization

Causal Global Optimization

Global Optimization Causal Global Optimization



● Target function is explicitly unknown and 
multimodal

● Evaluations are perturbed by noise
● Evaluations are expensive

+ Causal Graph

Causal Global Optimization

Causal Global Optimization1. Limit the sets to explore by 
identifying interventions worth 
exploring;

2. Construct a surrogate model 
incorporating observational and 
interventional data;

3. Extend the expected 
improvement acquisition 
function to explore different 
intervention sets;

4. Allow the agent to observe or 
intervene.

Causal Bayesian Optimization



1) Identify sets worth intervening on

Causal Bayesian Optimization

Lee, Sanghack, and Elias Bareinboim. "Structural causal bandits: where to 
intervene?." Advances in Neural Information Processing Systems 31 31 (2018).



2) Construct surrogate models 

Causal Bayesian Optimization



Sets worth 
intervening on 
based on the causal 
graph structure. 

Toy Example



Observational data 

Interventional data 

Target causal effect

Toy Example



Select Actions Address the intervention-observation 
trade-off

Optimize EI for every set and select the set 
giving the highest expected improvement.

Causal Bayesian Optimization



Causal Bayesian Optimization

BO 
Loop

Update prior 
distributions

Update posterior 
distribution



● BO is slower and identifies a 
suboptimal intervention

● CBO achieves the best result 
when using the Causal GP 
model

Simulation Results



Decide whether to intervene on Statin, 
Aspirin or both and select the best 
intervention level in order to minimize 
PSA. 
We found the optimal intervention to be 
({aspirin, statin}, (0.0, 1.0)).

CBO for healthcare



Take home messages

● Standard BO ignores causal assumptions. 

● Causal Global Optimization requires a new 
approach which we call CBO.

● CBO avoids exploring all possible sets. 

● CBO merges observational and 
interventional data via the Causal GP prior. 

● CBO solves both the exploration-
exploitation and the observation-
intervention trade off. 



● The number of GPs we require is determined by the 
number of sets to explore which is potentially huge.

● We don’t transfer interventional information across GPs 
e.g. we don’t account for the fact that intervening on X 
might give us some information about an intervention on 
X and Z

● We do not account for time and dynamic changes in the 
causal effects.

The DAG-GP 
framework

Dynamic 
CBO

CBO limitations
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CBO limitations

Virginia Aglietti, Theodoros Damoulas, Mauricio Álvarez, and JavierGonzález. Multi-task Causal 
Learning with Gaussian Processes. In Neural Information Processing Systems (NeurIPS), volume 33, 
pages 6293–6304.PMLR, 2020a.

Virginia Aglietti, Neil Dhir, Javier González, and Theodoros Damoulas.Dynamic Causal Bayesian 
Optimization. In Neural Information Processing Systems (NeurIPS) 2021.



Dynamic Causal Bayesian Optimization



Dynamic Causal Bayesian Optimization

Exploring all 
possible 
interventions in a 
causal graph.

● Refine a recursion linking causal effects across time steps thus allowing to share 
interventional information. 

● Construct a surrogate model incorporating observational and interventional data, both 
at the current time step and at previous time steps. 

For every time 
step:
● Optimal 

intervention set
● Optimal 

Intervention level 

Accounting for 
previous 
interventions.



Dynamic Causal Bayesian Optimization



● Step (1): Study the correlation among objective functions for two consecutive time steps and use it 
to derive a recursion formula that, based on the topology of the graph, expresses the causal 
effects at time t as a function of previously implemented interventions.

● Step (2): Develop a new surrogate model for the objective functions that can be used within a CBO 
framework to find the optimal sequence of interventions.

Assumptions

Dynamic Causal Global Optimization



Assumptions

Dynamic Causal Global Optimization

1. Same variables 𝑌, 𝑋, 𝑍 at all time steps 
and edges oriented in the same way.

2. Functional relationship for 𝑌 at time step 
𝑡 = 1 is 𝑌! = 𝑓"" 𝑌# + 𝑓"$"(𝑍!).

3. No dashed edges.



Characterization of the time structure in a DAG with 
time dependent variables

Theorem: The Time Operator

Are the parents of Y 
that are not intervened 
nor previous targets. 



Characterization of the time structure in a DAG with 
time dependent variables

Theorem: The Time Operator

Example 1.

Are the parents of Y 
that are not intervened 
nor previous targets. 



The surrogate model 
integrates 
observational data
and interventional 
data at previous 
time steps in the 
prior. 

The Dynamic Causal GP model

Interventional data 
at the current time 
step in the posterior.



Dynamic Causal Bayesian Optimization

Update prior 
distributions

Update posterior 
distribution

BO 
Loop

Time 
steps

BO 
Loop



Causal decision-making in dynamic settings 

DAG representation of a dynamic 
causal global optimisation 
problem and the DAG considered 
when using CBO, ABO or BO to 
address the same problem.



The Dynamic Causal GP model



Experimental results



GAP metric 

Experimental results



Experimental results

• MULTIV. : When the optimal intervention set is multivariate, both DCBO and CBO 
convergence speed worsen.

• IND. : Having to explore multiple intervention sets significantly penalises DCBO and CBO 
when there is no causal relationship among manipulative variables which are also the 
only parents of the target.
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Experimental results

We repeat all experiments in the paper allowing the algorithms to perform a lower number of trials at 
every time steps. For t > 0, when moving to step t the convergence of the algorithm at step t − 1 is not 
guaranteed. This affect the optimum value that the algorithm can reach at subsequent steps.



Take home messages

● Identifying an optimal intervention at every time 
step requires solving a Dynamic Causal Global 
Optimization. 

● DCBO solves the Dynamic Causal Global 
Optimization problem. 

● DCBO proposes a surrogate model integrating all 
available data across time steps thus identifying 
interventions faster than CBO in dynamic settings. 



● Multi-objective causal BO to jointly maximize different interventional functions or deal with multi-
dimensional outputs.

● A non-myopic causal BO to be used in dynamical systems where interventions performed at one time 
step affect the rewards an agent can obtain at future time steps.

● Causal BO to deal with discrete outputs and more generally non-Gaussian likelihoods.

● Connection between Causal RL, Causal Bandits and Causal BO.

● CBO for ITE and individual decision making. 

● Offline/Off policy CBO.

and many more ….

Future research directions …
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