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Systems decompose in sets of interconnected nodes

Figure 1: Causal Graph for Figure 2: Causal Graph for Net Figure 3: Causal Graph for Prostate
Crop Yield. Ecosystem Calcification (NEC). Specific Antigen (PSA) level.



Setting and goal

A causal graph (Directed Acyclic Graph - DAG).

Observational data from all (non hidden) nodes.

Ability of running experiments (in reality or in simulation).

Cost of experiments depends on the number and type of nodes in which we intervene.

Goal: Efficiently find the optimal intervention to perform.

Exploiting all available Intervention optimizing
source of information. a target node in a

graph.

E.g. In order to optimize the crop yield should we intervene on soil fumigants
X or on eel-worm population? If the optimal intervention is soil fumigants

‘ (intervention set), what level should we set them to (intervention level)?
Soil
fumigants




Causal model and the do-calculus (1/3)

Causal Model : DAG G + four-tuple (U,V, F, P(U))

e U: independent exogenous background variables.
e P(U) distribution of U.
e V: endogenous variables (non-manipulative, manipulative, target).

o F={fi,...,fiy}: functions v; = fi(paj, u;), pa;j are the parents of V..

C = f£(U.), U.~N(0,02
X = f£(C,Uy), U ~N(0,02)

: @ Y = £(X,C,U,), Yo~ N(0,02)



Causal model and the do-calculus (2/3)

Intervention : Setting a manipulative variable X to a value x, do(X = x)

Observed universe Post-intervention universe

& @%®

c = f(U) c = f(U.) X
X = fx(Ca Ux) P(X’ C, Y) X = x ( ’ )
Y = £(X,C,U,) Y = f(x,C,U,)

P(Y|do(X = x)) := PPX=X)(Y|X = x)




Causal model and the do-calculus (3/3)

Key question : How to do inference in the post-intervention universe.

e Intervene ——)> Interventional data———)> P(Y|do(X — x))
e Observe T Observational data™——> do-calculus=™—— P(Y|do(X = x))

Do-calculus: algebra to emulate the post-intervention universe in terms of conditionals
P(Y |X = x) in the observed universe.

Back-door adjustment

<> @ p(Y|do(X =x)) = [ P(Y]|c,X = x)P(c)dc



Take home messages

e Many real systems decompose in
interconnected nodes.

e Optimization of an experimental output
requires “intervening” in the manipulative
nodes.

e Do-calculus allows “simulating” experiments
with observational data.



Causal Global Optimization

4 ) )
* * .
X5, xs F arg min Ep(v|doXs=xs)| Y]
e Optimal Xs€P(X),xs€D(Xs) With the final
intervention set Exploring all possible goal of
e Optimal interventions in a optimizing a
intervention level causal graph. target variable.
. e see y 8 Y,

*X. and X g are one possible intervention set and value.

e yv* and X* are the optimal intervention set and value.
XS S




Causal Global Optimization

Global Optimization Causal Global Optimization

x* = argminE[Y|do (X = x)] X3, xs = argmin E[Y|do (X5 = x;)]
xe D(X) :(seeg(g(xg

2e988 ey

@@



Causal Global Optimization

Global Optimization Causal Global Optimization

. * * .
x* = arg min ]E[Y’do (X — x)] Xs7xs = arg min ]E[Y|d0 (Xs = XS)]
xs € D(Xs)
e Target function is explicitly unknown and e Target function is explicitly unknown and
multimodal

multimodal

e Evaluations are perturbed by noise
e Evaluations are expensive

e Evaluations are perturbed by noise
e Evaluations are expensive

+ Causal Graph

[ Bayesian Optimization ] [ Causal Bayesian Optimization ]




Causal Global Optimization

1.

Limit the sets to explore by
identifying interventions worth
exploring;

Construct a surrogate model
incorporating observational and
interventional data;

. Extend the expected

improvement acquisition
function to explore different
intervention sets;

Allow the agent to observe or
intervene.

Causal Global Optimization

X:,xz = argmin E[Y|do (X5 = x4)]
X;EP(X)
xs € D(Xs)

e Target function is explicitly unknown and
multimodal

e Evaluations are perturbed by noise

e Evaluations are expensive

+ Causal Graph

[ Causal Bayesian Optimization ]




Causal Bayesian Optimization

* G x :
X* x* = argmin__ Ep(y|do(x,=x,))[ Y]
[ Xs€P(X),xs€D(Xs) ] 1) Identify sets worth intervening on

Definition 3.1. Minimal Intervention set (Mis).
Given {G,Y,.X,C), a set of variables X, € P(X) is %

said to be a mis if there is no X! C X, such that
E[Y|do (X, = x,)] = E[Y|do (X], = x})].
E[Y|do(X = x),do(Z = z)] = E[Y|do(Z = z)]

Definition 3.2. Possibly-Optimal Minimal In-

tervention set (pomis). Given (G, Y,X,C), let
X, € Mgfy. X, is a poMis if there exists a E[Y|do(X = x*)] :/ E[Y|do(Z = z)]p(z|do(X = x*))dz
SEM conforming to G such that E[Y|do (X, = x*)] > z
Vwems Y\x“IE[Y|do (W = w*)|] where x* and w* de- < / E[Y|do(Z = z*)]p(z|do(X = x*))dz
note the optimal intervention values.

— E[Y|do(Z = z*)]

Lee, Sanghack, and Elias Bareinboim. "Structural causal bandits: where to
intervene?." Advances in Neural Information Processing Systems 31 31 (2018).



Causal Bayesian Optimization

X:, XS = arg min [EP(Y|do(Xs:xs)) [Y] ]
XseP(X),xs€D(X5)

2) Construct surrogate models
f(xs) ~ GP(m(xs), k(xs,%s))
m(xs) = ][:Z[Y|do (Xs = Xs)]
k(xs,X.) = krgr(Xs, X2) + o(xs)o(xL)

||x5—xg||2

o] kRBF(xs ’) = exp(——2,2—)

o 0(xs) \/V (Y|do (Xs = x)) with V¥ is the variance of the causal
effects estimated from observational data.




Toy Example

O —

~
J

7o MM"E ¥
x : N
3! ! 3
X = ex > R
g -2 ' g
Z =exp(—X) + ¢z .
Z
Y =cos(Z) — exp(— =) + ey Sets worth
20 intervening on
Mgy ={2,{X},{Z}} based on the causal
’ h structure.
Pgy ={1Z}} sTep
BQ,Y — {{X,Z}}




Toy Example

Causal GP prior

2
e 1D X D° == E(Y|do(X=Xx)) =—— m(x) —— ¢P model
—= |[nterventional data
0 Wwé
-2 —= Observational data
NVBVA e T o' TRVEEE, — —
-4 -2 0 2 4
X
, Standard GP prior
e D — KY|do(X=x)) =—— m(x) —— ¢P model
0 -
-—
—= Target causal effect
-2
-4 -2 2 4

xX O
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Acquisition (X)
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Causal Bayesian Optimization

. Address the intervention-observation
Select Actions
trade-off

EI*(x) = Ep(y,)[max(ys — y*, 0)]/ Co(Xs, x;) ” £=0.12 3 Vol(xxex(D(X))
v Vol(¢(D9))
N 10
e y. = E[Y]|do(Xs = x/)] 5
0
b Y* = MaXx,ces,xeD(Xs) E[Y’do (Xs - xs)] s
-4 -2 0 2 4
X
Optimize El for every set and select the set
giving the highest expected improvement. € = VOl( ( )) v N

Acquisition (Z)

-4 -2 0 2 4 -5 0 5 10 15 20
Intervention value Intervention value



Causal Bayesian Optimization

BO
Loop

<

Algorithm: Causal Bayesian Optimization

Data: D°, D', G, es, number of steps T
Result: XZ,x*, E[Y*|do(X: = x?)]
Initialise: Set D} = D' and DY = D°

o o

r for t=1, ..., T do
Compute ¢ and sample u ~ 2(0,1)
if € > u then

(Observe)

1. Observe new observations (x;, ¢;,y:).
2. Augment D° = DO U {(xt, ct, y1, )}
3. Update prior of the causal GP.

nd

Ise
(Intervene)

1. Compute E/*(x) for each element
S € es.

2. Obtain the optimal interventional
set-value pair (s*,a*).

3. Intervene on the system.

4. Update posterior of the interventional

e

\ end

GP.
nd

’

Update prior
distributions

Update posterior
distribution



Simulation Results

e BO is slower and identifies a
suboptimal intervention

e CBO achieves the best result
when using the Causal GP
model

X:)]

E{Y|do(Xs

Observational dataset with size N= 100

gy .cr*
By
Y+ |do(X = x)]

E[Y*|do(Xs = X:)]

Cost

100

120



CBO for healthcare

Decide whether to intervene on Statin,

Aspirin or both and select the best
intervention level in order to minimize

PSA.

We found the optimal intervention to be
({aspirin, statin}, (0.0, 1.0)).




Take home messages

Standard BO ignores causal assumptions.

Causal Global Optimization requires a new
approach which we call CBO.

CBO avoids exploring all possible sets.

CBO merges observational and
interventional data via the Causal GP prior.

CBO solves both the exploration-
exploitation and the observation-
intervention trade off.



CBO limitations

e The number of GPs we require is determined by the
number of sets to explore which is potentially huge. The DAG-GP

, : : : . framework
e We don't transfer interventional information across GPs

e.g. we don't account for the fact that intervening on X

might give us some information about an intervention on
X and Z

e We do not account for time and dynamic changes in the Dynamic
causal effects. CBO



CBO limitations

-

g

Virginia Aglietti, Theodoros Damoulas, Mauricio Alvarez, and JavierGonzélez. Multi-task Causal
Learning with Gaussian Processes. In Neural Information Processing Systems (NeurlPS), volume 33,
pages 6293—-6304.PMLR, 2020a.

~

J

e We do not account for time and dynamic changes in the Dynamic
causal effects. CBO

Virginia Aglietti, Neil Dhir, Javier Gonzalez, and Theodoros Damoulas.Dynamic Causal Bayesian
Optimization. In Neural Information Processing Systems (NeurlPS) 2021.



Dynamic Causal Bayesian Optimization

XoO e N
° %o T 5T ElYoldo(Xo = )] #
ZoO £ E[Y;|do(X1 = x)]
ElY5|do(X> =
Y'Oé k% [ 2‘ O( 2 X)])
t=0

== E[Y)|do(Z = z), Ip.t_1] X X,

o — IIE[Yt\doX II 1‘0, l] _ )
| V‘

—2r ‘)(

20




Dynamic Causal Bayesian Optimization

4 A N
* *
S,t’ xsyt — t | do (XS,t — xs7t) ]]'t>0 ) IOt_l]
Xs,t EP(Xt) .
. xs,t€D(Xs.t) Accounting for
For every time Exploring all previous
step: ploring interventions.
e Optimal possible L J
intervention set interventions in a
e Optimal causal graph. y

\ Intervention level

e Refine a recursion linking causal effects across time steps thus allowing to share
interventional information.

e Construct a surrogate model incorporating observational and interventional data, both
at the current time step and at previous time steps.



Dynamic Causal Bayesian Optimization

gt:()

1

t

2

Gi=

Xo

Zy

Yo

Xo

20

DAG

€Xo

€2,

€
€X

Yo

0

X1

€X,

€z,

€y,

Xo= fXO (CXO)
Zy = on(X(hEZo)
}/() = qu(Z()s €Yu)

Xo = on(fXO)

Zy = f5,() = 20

Yo = fvo (20, €v)

X1 = fx,(Xo,€ex,)
Zy = fz,(20, X1,€z,)
Y1 = fvi (Yo, Z1,€v,)

Xo = fx,(exy)

Zo = f%,(-) = 20

Yo = fyy (20, €vy)
X1=rf%,0)=n

Zy = fz,(z0,21,€z,)
Y1 = fy, (Yo, Z1,ey,)
Xo = fx,(21,€x,)

Za = fz,(Z1,X2,€z,)
Yo = fy, (Y1, Z2,€y,)

M,

F() = {meon
U() = {€Xn7€Zo:

vt Co=9
€Yn} Yo=Y,

Xy = {Xo, Zo}

Iy = (Zo,20) = argmin E[Yp | do(Xs,0 = Xs,0)]
Xs,0€P(Xo),
xs€D(Xs,0)

Foi1 = {fxo: [2e> [Yorx1 » f22 fri} Coa = {Xo, Yo}
U = {éxn,ﬁYmEXl,éZlle} Yo1=Y

X():l = {Xth

}

I = (Xp,21) =

argmin E[Y; | do(Xs1 = Xs,1), Lo]
X 1EP(X1),
xsE€D(Xs,1)

F():2 = {me.féo:waf)I{lz.fZlafYIa,fXg:sz',sz}

Uopo = {€x,, €Yy, €215 €V, €X,, €25, €Y, }

X():2 = {X27 Z2

}

C():2 - {X()7 YE): Zl: Yl}
YO:2 = Y2
I = (Z2,22) = argmin E[Y2 | do(Xs,2 = Xs,2), 1, Io]

Xs,2€P(X2),
xs€D(Xs 2)




Dynamic Causal Global Optimization

e Step (1): Study the correlation among objective functions for two consecutive time steps and use it
to derive a recursion formula that, based on the topology of the graph, expresses the causal
effects at time t as a function of previously implemented interventions.

e Step (2): Develop a new surrogate model for the objective functions that can be used within a CBO
framework to find the optimal sequence of interventions.

1. Invariance of causal structure: G(t) = G(0),Vt > 0.

2. Additivity of fy,(-) thatis Y; = fy,(Pa(Y;)) + e with fy,(Pa(Y;)) = fy (YFT) + fYY(YNT)
where f{ and Y are two generic unknown functions and € ~ N(0, 02).

3. Absence of unobserved confounders in Gy.7.



Dynamic Causal Global Optimization

1. Invariance of causal structure: G(t)

= G(0),vt > 0.

2. Additivity of fyt( ) thatis Y; = fy, (Pa(Y;)) + € with fy, (Pa(Y;)) = fy (VFT) + Y (YN
0,

where f)’f and f

3. Absence of unobserved confounders in Gy.7.

are two generic unknown functions and ¢ ~ N\/(0,

O—=0

Xo

X1

O—0

0

Z1

O—0

X

Zr

3

Yr

a?).

Example 1.

Same variables Y, X, Z at all time steps
and edges oriented in the same way.

Functional relationship for Y at time step
t=1isY; = fy (Vo) + 7 (Z0).

No dashed edges.



Characterization of the time structure in a DAG with

time dependent variables

Theorem: The Time Operator

VXs.: € P(X¢), the intervention function
fs’t(X) = E[Yt ’ dO(XS’t = X) s 1t>0 . IO:t—l] Wlth f;7t(X) . D(Xs’t) — R
can be written as:

fot(¢) =Y (F) JH Epw) dex. =) [y (X751, w))]

where f* = {E[Y;|do(X}; = x};) , lo.i-1] }v,cypr that is the set of
previously observed optimal targets that are parents of Y;. f,/ denotes

YPNT t5 Y.

\_

(Consider a DAG Gp.1 and the related SEM satisfying the assumptions.\

function mapping YFT to Y; and A'Y represents the function mapping

(2)

the

J

Example 1.
O—0—> -+ —0
Xo X1 Xr
Zo VA Zr
Yo Yi Yr

Ig{t—lz{ZO}

E[Y |do(Z; = 2), Io]

=(/¥ (w3) + /2 (2)

Are the parents of Y
W = @ that are not intervened
nor previous targets.




Characterization of the time structure in a DAG with
time dependent variables

Example 1.
O—>O—> -+ —0
Xo X1 Xt
Theorem: The Time Operator

y !
[ \ éZ >(~>Z e Z
Consider a DAG .7 and the related SEM satisfying the assumptions. 0 ! T
VXs.: € P(X¢), the intervention function

§ Y !
] AN » e
fs,t(X) = E[Yt ’ dO(XS’t = X) s 1t>0 . IO:t—l] Wlth f;7t(X) . D(Xs’t) — R

can be written as: Yo Y1 Yr
- ; IV, . ={Z
fo.e (%) | (F) HEp(w] dotx. .=y [y (X7, iFY, )] (2) 0:t—1 { 0}

here f* = {E|Y;|do(X*. =x¥ ), lo.i— : that is the set of
W ere { [ | o(. ¥ xs’,) o 1}}\/’eytPT at is ise 0 E[Y1| dO(X1 _ X) ’ IO]
previously observed optimal targets that are parents of Y;. f, denotes the

function mapping YFT to Y; and A'Y represents the function mapping = f\)/(yg) +Ep(z1| dd Xs =x), o) [ny(Zl)}
YPNT to Y,

\_ J

Are the parents of Y
W = {Z;} that are not intervened
nor previous targets.



The Dynamic Causal GP model

fo t(x) = E[Yi|do(Xs t = %), 10 - lo:e—1]

foe(%) ~ GP(ms o(x), ks e(x, X))
ms e(x) = E |&Y (£) HE[RY (7Y, 1Y, w)]

ks,t(xa X/) — krbf(x7 X/) -+ O-S,t(x)o-s,t(x/)

with o5.¢(x) = /VIRY (F) 4| B[R (xPY,iPY, w)).

The surrogate model
integrates

and interventional
data at previous
time steps in the
prior.

Interventional data
at the current time
step in the posterior.



BO
Loop

Dynamic Causal Bayesian Optimization

Algorithm: Causal Bayesian Optimization

Data: D°, D', G, es, number of steps T
Result: X2, x!, B[Y*|do (X; = x?)]
Initialise: Set D}y = D' and DY = DO
f for t=1, ..., T do
Compute € and sample u ~ 1(0, 1)
if € > u then
(Observe)
1. Observe new observations (x;, ¢;,Y:).
2. Augment D° = D° U {(xe, €, e, )}
3. Update prior of the causal GP.
end
else
(Intervene)
1. Compute EI*(x) for each element
s € es.
2. Obtain the optimal interventional
set-value pair (s*,a*).
3. Intervene on the system.
4. Update posterior of the interventional
GP.

end

\ end

Update prior
distributions

Update posterior
P distribution

Time
steps

<

(fort=0,...,Tdo

Algorithm 1: DCBO

Data: D, {D!;_,}scqo,.... o)} Go:1s H.
Result: Optimal intervention path

{X:,t’ X:,m y:}tT=1
Initialise: M, D} and initial optimal D! = @.

1. Imtialise dynamic causal GP models for all
X+ € M, using DL, ift > 0.
7. Initialise interventional dataset
{Dl }ecto,... M,y
forh=1,...,H do
1. Compute EI, +(x) for each X, ; € M. BO
2. Obtain (s*, o)
3. Intervene and augment D!__. , Loop
4. Update posterior for fo_s+ ¢+
end
3. Return the optimal intervention (X* ,,x*,)
4. Append optimal interventional data
DI, =D Y (X% 4x54),91)

end




Causal decision-making in dynamic settings

Temporal Dimension
\

RS

Causal Dimension

ve X
() DCBO (c) ABO
f(do(Xs,t = xs,t)a IO:L—I) .f(X =X, t)
Xo X1 0OX,
Yo Yi 1Y,
Z, 7, 07,
(b) CBO (d BO
f(do(X, = x,)) fX=x)
Xo X1 Xg Xo Xl X2
Zy Zy OZ, Yo Y1 OY;
Yo Y1 OY; Zy Zy Oy

DAG representation of a dynamic
causal global optimisation
problem and the DAG considered
when using CBO, ABO or BO to
address the same problem.



The Dynamic Causal GP model

== E[Y||do(Z = z), Ips-1] X X;.z,

o — E[Yi|do(X = z), o1

X =ex U N B
[ T A )
Z =exp(—X)+ez \ \ AN, U/
\ \/ v
Z

=20 W ‘ .
Y:cos(Z)—exp(—%)—}-Ey 0 2,210 20
Y Ui Ve
L — DCBO — fz(z
=5 --- CBO e D ,
ABO « DO
X —10~ L x X e x x A - x . L x wx
0 » 10 20 0 » 10 20 0 » 10 20
Zr —— DCBO = BO TE o
Of == CBO === E[Y|do(X} = z2) ¥
ABO ™| |
Yr | ot
o
| ~
Xt =41 +€x g N
Zy =exp(—Xt) +24-1 + €z 0 10 20 30 0 10 20 30 10 10 20 30

7 Cumulative Cost Cumulative Cost Cumulative Cost
Y; = cos(Z;) — exp (2—6) + Y1 + €y



Experimental results

Xr

Zr

Yo Zy A Zy Yy Y, Us
(a) MULTIV. (b) IND. (c) NONSTAT. (d) ECON. (e) ODE.

Figure 3: DAGs used in the experimental sections for the real (§4.2) and synthetic data (§4.1).

= DCBO
—— CBO
ABO
— BO
______ E[Y; | do(X}, = x2,)]

0 5 10 15 0 5 10 1570 5 10 15
COSt(XsAh xs,f) cost (Xs.ta xs.f) COSt(Xs,h xs.t)

Figure 4: Convergence of dcbo and competing methods across replicates. The
dashed black line (- - -) gives the optimal outcome y;",Vt. Shaded areas are +
one standard deviation.



Experimental results

GAP metric

_ [y(G5e) — y(inie) N H — H(x},)
Y* — Y(Xinit) H

(a) MULTIV. (b) IND. (c) NONSTAT. (d) ECON. (e) ODE.

Figure 3: DAGs used in the experimental sections for the real (§4.2) and synthetic data (§4.1).

Table 1: Average G; across 10 replicates and time steps. See Fig. 1 for a summary of the baselines.
Higher values are better. The best result for each experiment in bold. Standard errors in brackets.

Synthetic data Real data
STtAT. MIiss. Noisy MULTIV. IND. NONSTAT. ECON. ODE
DCBO 0.88 0.84 0.75 0.49 0.48 0.69 0.64 0.67
(0.00) (0.01) (0.00) (0.01) (0.04) (0.00) (0.01) (0.00)
CRO 0.70 0.70 0.51 0.48 0.47 0.61 0.61 0.65
(0.01) (0.02) (0.02) (0.09) (0.07) (0.00) (0.01) (0.00)
ABO 0.56 0.49 0.49 0.39 0.54 0.38 0.57 0.48
(0.01) (0.02) (0.04) 0.21) (0.01) (0.02) (0.02) (0.01)
BO 0.54 0.48 0.38 0.35 0.50 0.38 0.50 0.44

0.02) (0.03) (0.05) (0.08)  (0.01) (0.03) (0.01) (0.03)




Experimental results
( Xo X X

Zy Z Z> ¢ U,
\ (a) MULTIV. (b) IND. j (c) NONSTAT. (d) ECON. (e) ODE.

Figure 3: DAGs used in the experimental sections for the real (§4.2) and synthetic data (§4.1).

*  MULTIV. : When the optimal intervention set is multivariate, both DCBO and CBO
convergence speed worsen.

* IND. : Having to explore multiple intervention sets significantly penalises DCBO and CBO
when there is no causal relationship among manipulative variables which are also the
only parents of the target.



Experimental results

*  MULTIV. : When the optimal intervention set is multivariate, both DCBO and CBO
convergence speed worsen.

* IND. : Having to explore multiple intervention sets significantly penalises DCBO and CBO
when there is no causal relationship among manipulative variables which are also the
only parents of the target.

0 P— 2 t—1 lr\\ t = 2| — DCBO
1& \ == CBO
ke F ABO
-1 x‘ O'X‘M 0 o —— — o
-2 v : -1 h : = 1 , I B E[Y; | do(X3, = x},)]
0 20 40 600 20 40 60 0 20 40 60
cost (X, Xq) cost (X4, Xq ) cost (X, Xsy)

Figure 8: Experiment MULTIV.. Convergence of DCBO and competing methods across replicates.
The red line gives the optimal y; , V¢. Shaded areas are + standard deviation.

t— 9| — DCBO

- = CBO
ABO

— BO

5 K K - - — 1 - : 1 - E [Y, | do(X%, = x:_l)]

0 20 40 60 0 20 40 60 0 20 40 60

cost (X, X;¢) cost (X, X 1) cost (X, 4, X 1)

yr

2
1
0

Figure 9: Experiment IND. Convergence of DCBO and competing methods across replicates. The red
line gives the optimal y;, V¢. Shaded areas are + standard deviation.



Experimental results

We repeat all experiments in the paper allowing the algorithms to perform a lower number of trials at
every time steps. For t > 0, when moving to step t the convergence of the algorithm at step t — 1 is not
guaranteed. This affect the optimum value that the algorithm can reach at subsequent steps.

—0.5 t=0 t=1 t = 92| — bcBo

o = ~~ BO
'S -10 . r ABO
S 0 —~— 0 —— BO

—1.5E - - . - ) ) - E [)f | do(X3, = x:..')]
0 20 10 6010 20 10 6010 20 10 60
cost(X 1, Xsy) cost (X, Xst) cost (X, Xst)

Figure 15: Experiment MULTIV. with maximum number of trials H = 30. Convergence of DCBO
and competing methods across replicates. The black line gives the optimal y;, V¢. Shaded areas are
+ one standard deviation.



Take home messages

Identifying an optimal intervention at every time
step requires solving a Dynamic Causal Global
Optimization.

DCBO solves the Dynamic Causal Global
Optimization problem.

DCBO proposes a surrogate model integrating all
available data across time steps thus identifying
interventions faster than CBO in dynamic settings.



Future research directions ...

e Multi-objective causal BO to jointly maximize different interventional functions or deal with multi-
dimensional outputs.

e A non-myopic causal BO to be used in dynamical systems where interventions performed at one time
step affect the rewards an agent can obtain at future time steps.

e Causal BO to deal with discrete outputs and more generally non-Gaussian likelihoods.
e Connection between Causal RL, Causal Bandits and Causal BO.
e CBO for ITE and individual decision making.

e Offline/Off policy CBO.

and many more ....



THANK YOU!
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This paper studies the problem of globally
optimizing a variable of interest that is part
of a causal model in which a sequence of in-
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of interest. For instance, in strategic planning, com- T.Damoulas@warwick.ac.uk

panies need to decide how to allocate scarce resources

across different projects or business units in order to

achieve performance goals. In biology, it is common to Abstract

change the phenotype of organisms by acting on individ-
This paper studies the problem of performing a sequence of optimal interventions in
a causal dynamical system where both the target variable of interest and the inputs
evolve over time. This problem arises in a variety of domains e.g. system biology
and operational research. Dynamic Causal Bayesian Optimization (DCBO) brings
together ideas from sequential decision making, causal inference and Gaussian
process (GP) emulation. DCBO is useful in scenarios where all causal effects



