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Motivation



Let’s start with a classic




There was “a lot of correlation”

TIONSHIP BETWEEN HUMAN SMOKING
ND DEATH RATES
-UP STUDY OF 187,766 MEN

D.; Daniel Horn, Ph.D.

ers, 56 were heavy smokers
S. 23.9% other cancer patients
st (all 36 who died of lung



Unobserved confounding
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Introduction



Naive ML approach: standard regression

linear least squares:

XeR, YeR
[Y:f(X)JreYJ

[E[ey 1X] = o}

E[Y - f(X)]X] =0
S E[Y[X] = £(X)

f =argmin Z(f(xi) -9i)°
f i



Naive ML approach failing

i oiCh Ao X o g Ctey

%{)’/_:‘é Y = X +B-C+ey




Losing hope...




Instrumental variables

unobserved .----.,
confounding : U : _
TR (a)Z influences X ZYN X
(b)Z is independent of U Z 11U

(c) Z only influences Y via X Z 11 Y|{X, U}

| ‘ |
instrument outcome

treatment
assume: Y = f(X)+ey with El[ey]=0

(BLY 21} 2700 + v |21 =B (0012] = [[f(orl )

identifiable identifiable



Two stage least squares (2SLS) -- linear case

first stage

second stage Y
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Problem formulation



General problem formulation

/ U Assumptions \

(a)Z influences X Z X
(b)Z is independent of U Z1U
(c) Z only influences Y via X Z 11 Y|{X, U}
| ‘ |
‘ X=¢(Z,U) Y=FfXU)
_ E f Y,
g Goal - partial identification A
For any x” compute lower and upper bounds on the causal effect

E[Y |do(x")]




General problem formulation as optimization

optimize over “all” distributions

/ \

X=9(Z,U) Y=f(XU)

Goal
among all possible {g, 7} and distributions over U
that reproduce the observed densities {p(x | z), p(y | z)},
estimate the min and max expected outcomes under intervention




Operationalizing this optimization

e without any restrictions on functions and distributions:

effect is not identifiable and average treatment effect bounds are vacuous
[Pearl, 1995; Bonet, 2001; Gunsilius 2018]

e mild assumptions suffice for meaningful bounds:
fand g have a finite number of discontinuities [Gunsilius, 2019]

e rest of the talk: operationalize the optimization

choose convenient

. . function spaces
find convenient P

representation of U from

which we can sample approximate constraints of

preserving p(x | z) and p(y |
z)




Our practical approach



Response functions |

e cach value of U fixes a functional relation X = Y

e collect the set of all resulting functions {f}

e identify values of u that result in the same f, and
assign a unique index r

ultimately, we care about

this functional relation Y=f(X,U)=1X+1,XU +U,

flx,u)=Ax+Ax for u;=1,u,=0
fr(x)=(A1 + A,)x where ris an alias for (1,0)

— Instead of a potentially multivariate distribution over confounders U directly,
we can think of a distribution R over functions - X = Y



Response functions Il

find convenient
representation of U from
which we can sample

find convenient representation of
distributions over response functions

“Let‘—’s get to work.”




Parameterizing response functions

We choose a simple

parameterization
fr(x):=fg (x) for 6e€®C RK

For simplicity, work with linear combination of (non-linear) basis functions:

K
fo(x) = Zek¢k(x) for basis functions {¢; : R — ]R}kK:1
k=1




Parameterizing the distribution over 6

implies a causal model

pm(0)

\
Goal

optimize over distributions P(6) such that

JPM(x, v|z,0)pp(0)dO matches (estimated) marginals p(x|z),p(v]|z)
/

again, assume parametric form of p4(0)

py(0) with qERd



Obijective function

objective
min/max E[Y |do(x*)] = min/maxjfg(x*)pﬁ(e)dO
1 N 1 1

Our model must match the observed data. Next up: Add these constraints.



Match p(x | z) and enforcing Z L U

identified from data
manually fix it

|
factor Py(x,0]z) =p(x|z)p,(0]x,2)

py(01%2) 1= ¢, (F(x]2), F(61),.... Fy (6)) | | py(6k)
\ k=1 %
\ / \
copula density univariate CDFs Gaussian marginal densities

P (0%) = N (Ok; pir, o)

for a multivariate Gaussian copula, the optimization parameters are

1= {p,In(02),..., ux,In(02), L} € RK(K+1)/2+2K



Match p(y | z)

exact constraint in the continuous outcome setting

data Pr(ng|Z:z):Jl(fg(x)Sy)pﬂ(x,le)dx do our model

choose discrete infiniee guiduier 2f aocbteesign points to bins
° mtegral ov?r non- c\ontlnuous |nd|cator
Z ’::b \M+1) for me[M]

for a dictionary of basis functions {¢1}i-;

BLG(V) 1271 = [ i fol0)py (012 dx do

data J\ our model

- a. - | — ¢1(Y):=E[Y], ¢o(Y):= V[Y]




Intermediate overview

Z 11 6-

copula: }7

fix manually C Q{M
s0(x|z) py |z)<_*plicitconstraint

ELG(V)1] = [ 1(fatx))p 012" dx do

objective

' E[Y|do(x*)] = mi *
mﬁm/m];ax [Y|do(x™)] mnm/mnaxjf@(x )p,(0)do



The final optimization problem

objective: Oz (7] f fo(x* )p, (0
- o precompute once
[constramt LHS: LHS,, | := ™1 ] up front from data
constraint RHS: RHS,,, (1 f¢l (fo(x))p,(x,0 |z Ndxde
opt. problem: mqin/mi?x ogx (1) s.t. — RHS,, ;(n) for all m € [M], ] € [L]

use augmented Lagrangian with stochastic gradient descent
e for each z(m) sample batch of 6

e take average to estimate objective and constraint term RHS |
e use auto-differentiation and gradient-based optimization




Empirical results



Choices of response functions

K
fo(x) = Zekzpk(x) for basis functions {;:R — IR}kK:1
k=1

Polynomials
i (x) = xF71 for k € [K]

/ Neural network\

Train a small fully
connected network
on observed data
X— Y and take
activations of last
hidden layer as

/ Gaussian process\
Train GPs on
subsets of observed
data X—Y and take
random samples
from the GP as

k basis functions. /

k basis functions. /




~— possible models ElY|do(X = «*)] === 2SLS =—-:= KIV - lower bound -->- upper bound - - - data

linear response quadratic response MLP response

linear Gaussian setting; weak instrument and strong confounding (a =0.5,5 =3)

4 4 H H A7 7




non-additive, non-linear setting; weak instrument an

d strong confounding (a=0.5, 5=3)

7




Sigmoidal cause-effect design

cubic response GP response MLP response

—1.5 -1.0 —0.5 0.0 0.5 10 15 —1.5 -1.0 —0.5 0.0 0.5 1.0 1.5 —1.5 —1.0 —0.5 0.0 0.5 1.0 1.5

more details and experiments (also in the small data regime) in the paper
https://arxiv.org/abs/2006.06366
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