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dependencies in games?

2. How can we answer causal queries in 
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• Given , we learn about z π

15

• Given an extended MAIM  with 
rationality relations , the answer to a 
conditional query of  given 
observation  is given by the set  

𝗑ℳ
ℛ
x

z
Prℛ(x ∣ z) := { Prπ(x ∣ z)}π∈ℛ(𝗑ℳ∣z)

•
are the conditional rational outcomes
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 in  as  in , 

where  and 
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M' = M∖Z MD = π
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 (i.e., ) we denote the 

resulting extended MACIM by 

Y ← y V
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𝗑ℳy

• Given an extended MACIM  with 
rationality relations , the answer to 
an interventional query of  given 
intervention  is given by the set  

𝗑ℳ
ℛ

x
y

Prℛ(xy) := { Prπ(xy)}π∈ℛ(𝗑ℳy)

•  are the interventional rational 
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• Set  and predict ΠD1 ← ̂πD1 u1

• It is easy to see that we have
ℛ(𝗑ℳ ̂πD1

) = {( ̂πD1, πD2) : πD2 ∈ rD2( ̂πD1)}
• Then for each , 

compute 

π ∈ ℛ(𝗑ℳ ̂πD1
)

Pr(u2
̂πD1

) = Pr( ̂πD1,πD2)(u2)
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• How should we express this CPD using a 
deterministic function and stochastic 
exogenous variable?
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• One choice for a canonical structural 
representation is then given by:

• Prπ(𝖾k
D) = π(d ∣ pa′�

k
D)

• Prπ(d ∣ pa′�
k
D, 𝖾D) = δ(d = ek

D)

• In extended MASCIMs, we merge the 
mechanism variables for  and  into 
a single decision rule variable 

D 𝖤D
ΠD
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where 
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ℛ(𝗑ℳy ∣ z) := {(π, π′�) ∈ ℛ(𝗑ℳy) × ℛ(𝗑ℳ ∣ z) : π−D(y) = π′ �−D(y)}
•Counterfactual joint policies  are members of  such that  is consistent 

with the observation  whenever  is not affected by , i.e. 
π ℛ(𝗑ℳy) πD

z ΠD Y ← y ΠD ∉ Π(y)

•We then sample from  according to the new joint policyPrπ(eD(y))

•But when we learn about  based on  we do so under the actual joint policy e−D(y) z π′�
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• In earlier work [6], we study:

• Equilibrium refinements (NE 
[10], SPE [15], THPE [14])

• Subgames
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• Dynamic strategic decision-making 
most often modelled using EFGs

• Better for some things

• Worse for reasoning about causality

• Other causal models capturing 
equilibria or optimisation, but no 
emphasis on strategic reasoning

• Cyclic causal models [1]
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• Other causal models capturing 
equilibria or optimisation, but no 
emphasis on strategic reasoning
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• Dynamic strategic decision-making 
most often modelled using EFGs

• Better for some things

• Worse for reasoning about causality

• Other causal models capturing 
equilibria or optimisation, but no 
emphasis on strategic reasoning

• Cyclic causal models [1]

• Chain graphs [9]

• Settable systems [17]
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• Our main interest is in making AI 
systems safer, fairer, and better at 
cooperating

• To ensure safety, we want 
guarantees that AI systems won’t 
have incentives to do bad things [4]

• If they do bad things, we want ways 
to assess blame and intention [5]

• We also want to allow AI systems to 
harness these notions in order to 
learn to cooperate [7]

30

Applications
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So What?
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• Being able to reason causally about 
strategic interactions is important for 
understanding and predicting agents

• Causality is intrinsic to incentives, 
fairness, blame, intent, explanations, 
threats/offers, social influence, etc.

• Previously we had causal models without 
game-theoretic concepts (and vice versa)

• Now we have both combined in (what I 
claim is) a general, formal, and rich 
framework that subsumes precursors

• But there’s much more to be done!
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Thanks for listening! 
Any questions?
Full paper coming soon, watch this space! 
Find out more: causalincentives.com 

lewis.hammond@cs.ox.ac.uk 
lewishammond.com 

@lrhammond

http://causalincentives.com
mailto:lewis.hammond@cs.ox.ac.uk
https://lewishammond.com
https://twitter.com/lrhammond
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