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A bit about me

e Postdoctoral research fellow at
the University of Leeds

e Research focusses on the
integration of formal causal
inference methods with
simulation-based methods in
longitudinal settings




* The formal processes by
which we infer cause-and-
effect relationships from

Causa data

mfe rence e Sometimes referred to as
“counterfactual prediction”

* “If | changed X, how would
Y change?”



COVID-19

* Contagious respiratory disease caused by
SARS-CoV-2

* First reported in Wuhan, China in
December 2019

* Global pandemic declared by WHO on 11
March 2020

* Many features unknown, but clear that
virus had high potential for transmission
and induced substantial
morbidity/mortality
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Non-pharmaceutical interventions eis)

T et et am e et omtommen

Public health measures that aim to prevent and/or control community
transmission of SARS-CoV-2

e Common examples include:
e Limits on mass gatherings
* Closing of schools and non-essential shops
* Restrictions on internal/external movements
* Orders to stay at home or shelter in place (i.e. ‘lockdown’)



Lockdowns

L

* Lockdowns generally carry substantial social and economic costs

 Single-country studies (first wave) have generally found that delaying
lockdown measures can be even more costly
* 57% of deaths in the USA could have been avoided by implementing a national lockdown
1 week earlier (Knock et al. 2020)

» 74% of severe cases in England could have been avoided — and the required length of
lockdown halved — had social distancing and lockdown measures been implemented 1
week earlier (Arnold et al. 2022)

* Multi-country studies are much more equivocal



T

e Full lockdown reduced R, by 64-85% (Oraby et al. 2021)

e National lockdowns reduced R, by 0.8-14% (Haug et al.
2020)

H OW effe Ct | Ve e Stay-at-home orders reduced R, by 13% (Brauner et al.

2021)

are lockdowns?

e Lockdowns reduced R, by 81% (Flaxman et al. 2020)

e Stay-at-home orders reduced number of new
infections by 4% (Banholzer et al. 2021)
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Common methods of analysis

Descriptive or

correlational Regression SEIR

e Pachetti et al. (2020) e Li et al. (2020) e Davies et al. (2020) e Baunholzer et al.
e Plumper and e Papadoloulos et al. e Hyafil and Morina (2020)
Neumayer (2020) (2020) (2020) e Flaxman et al. (2020)
e Liu et al. (2021) e Pei et al. (2020) e Haug et al. (2020)
e Fuller et al. (2021) e Oraby (2021) e [slam et al. (2020)

e Kontis et al. (2020)
* Brauner et al. (2021)



Methodological challenges
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Between-country heterogeneity makes standard correlational and regression
studies impractical to implement and difficult to interpret

* Demographics

e Cultural norms

* |ncentivisation systems

» Testing criteria, procedures, and capacities

 Many methods rely on (and are sensitive to) assumptions about unknown
features of the infection and disease processes
* Transmission rates
 Basic (Ry) and effective (R;) reproduction numbers



Methodological
challenges (cont.)

* Observed data are subject to a
high degree of autocorrelation
and weekday effects

* Intervention effects are observed
with an unspecified delay

* Lag periods vary widely by
geography (Liu et al. 2021)

* Lag periods are generally much
longer that incubation period for
SARS-CoV-2 (e.g. 2-3 weeks in
Canada, Stockdale et al. 2020)
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Methodological
challenges (cont.)

* High degree of intervention
clustering

* Ordering of interventions affects
apparent effectiveness
* Lockdowns are often introduced

after a series of less-stringent
measures

* NPIs introduced earliest tend to
have greatest effects (Li et al. 2021)
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Solutions

I |

Model a standardised sequence of interventions:
1. Initial uncontrolled growth
2. Growth under initial restrictions
3. Growth under national lockdown

 Allow for varying lag periods between and within countries
 Accommodate autocorrelation and weekly effects
e Use countries as own comparators

* Bypass need for assumptions about transmission rates
* Directly model exponential growth



Exponential growth

L

A causal process whereby the total number of cases on a given day (t) is a
multiple (r) of the total number of existing cases:

Cumulative cases; = Cumulative cases;_q1 * 1

Incident cases; = Cumulative cases;_1 - (r — 1)

This equation implies a linear relationship between cumulative and incident
cases over time... the slope of which should change due to social distancing and
lockdown measures



Trajectory of World COVID-19 Confirmed Cases (2020-01-29)
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Research
guestion

To what extent does
delaying implementation of
initial (often voluntary)
measures and more severe
lockdown measures increase
total case numbers and
ultimately prolong the
length of lockdown
required?



Study sample & data sources

Study sample Data sources | I

* First wave of COVID-19 * COVID-19 Data Repository by the
* 44 European countries eligible for Cen.ter fqr Systems Suencg and
inclusion Engineering at Johns Hopkins
University

e Oxford COVID-19 Government
Response Tracker

e World Bank
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01
dentification of
important dates

Date of first restriction:

* First date where any of the specified containment
and closure policies were recommended or
required

Lockdown:

 First date for which either a stay-at-home order or
3+ other containment and closure policies were
required nationally
Date of lockdown easing (i.e. end of full lockdown):

 First date subsequently for which the total
number of measures required nationally
decreased
End of first wave:

« 28 days after the date of lockdown easing



Important dates in COVID-19 European policy responses
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Parameter
estimation

* We considered 3 potential periods of
growth:
1. Initial uncontrolled growth
2. Growth under initial restrictions
3. Growth under national lockdown

* Using Arima spline models, we
estimated for each country:
* The 10 most likely dates for which each
period of growth began (i.e. the knot dates)
* Relative likelihood of each pair

* The growth factor r (and standard deviation
SD.,.) governing each period of growth
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* Weighted median lag periods across
all countries:
e 14.0 (Q1-a3: 10.7-18.0) days from the first

Key ﬁ n d | n gS restriction to the first knot date

e 20.2 (Q1-03: 16.0-24.0) days from lockdown

to the second knot date
from

* Weighted median growth factors

p arameter across all countries:

e 1.222 (a1-a3:1.156-1.296) during initial
uncontrolled growth

e Stl m a tl O n e 1.048 (a1-a3:1.015-1.060) during growth

under initial restrictions

* 0.957 (Q1-03:0.944-0.971) during growth
under lockdown



03 Counterfactual simulations

* We used stochastic simulations to estimate the growth of COVID-19 cases | I

within each country during the first wave under 4 scenarios:

1. Natural growth

2. Earliest possible lockdown

3. Earlier intervention sequence (3 days)

4. Earlier first restriction (3 days) and earliest possible lockdown

 Under each scenario, we estimated:

* The total number of first wave cases
* The required length of full lockdown (i.e. the number of days to reach the same daily case
threshold that was observed when lockdown was actually eased)



Some
simulation
details

All scenarios were simulated 100,000 times

* Median and 95% simulation interval
calculated

A random growth factor was drawn from a
lognormal distribution for each day in each
simulation, according to the period of
growth in which it fell

All knot date pairs identified as most likely
were used, with their frequency
corresponding to their relative likelihood

Note: not all counterfactuals could be
computed for all countries
* The first knot date could not occur

(counterfactually) before the simulation
period began
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Length of full lockdown required in all simulations
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Simulation

Earliest possible lockdown

Earlier intervention sequence

Earlier first restriction and
earliest possible lockdown

*compared to natural history

Total cases in first wave

Median percentage

change* (Q1, Q3)

-28.61
(-51.18,-7.22)
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Ot h er * Significant between-county

heterogeneity wrt key parameters

i rT’ po rta nt * Qutbreak scales

 Growth factors

f| r d | n gS * Lag periods




Comparison with regression analysis

e Exposure: number of cases on the date of lockdown (logged) | I

1. Daily (7-day moving average)
2. Cumulative

e Outcome: length of full lockdown

* Covariates:
* Area size, GDP, total population (primary analysis)

* Area size, GDP, population (0-14, 15-64, 65+), urban population, total healthcare
expenditure (secondary analysis)



* No clear or substantial relationship
between lockdown timing and length of
full lockdown

* Primary effect estimates ranged from

-1.35 (95% Cl: -4.82 to 2.13) t0 0.33 (95% Cl: -
3.60 to 4.27)

* 1 fewer day of lockdown for every 210%
increase in daily cases to 1 more day of
lockdown for every 2070% increase in total
cases on the date of lockdown

Effect

-10-

Analysis: B Unadjusted @ Primary 4  Secondary




Strengths

e Simulations accounted for between-country heterogeneity by evaluating the | I

counterfactuals within each country separately

* No assumptions about transmission rates or reproduction numbers were
required
* Parameters of interest could be directly estimated from observed data

 Accommodated variation and uncertainty wrt lag periods and growth factors

 Accommodated autocorrelation and weekly effects



Limitations

T weseyonte oty e mmmyoroeimome

Modelling provides only an incomplete summary of the first wave
* Confirmed cases < true infections

* Analyses did not account for variation in lockdown stringency between
countries or increasing stringency of restrictions within different periods of
growth

e Other assumptions required:
* Testing levels remained relatively constant across the first wave
e Changes in the growth factor were the direct result of NPIs
* Interventions produced a sharp change in the growth factor



* |tisimportant to act both strongly and swiftly to
minimize the spread of COVID-19 when case

CO n C ‘ u S | O n S numbers are increasing exponentially

* There exists substantial between-country
& heterogeneity that must be adequately taken
I I I into account when conducting multi-country
studies

i m p ‘ | Cat | O n S * A counterfactual framework is useful for

conceptualizing and evaluating the effects of
various non-pharmaceutical interventions
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Interactive dashboard

L

Many thanks to Dr Camila Rangel-
Smith and Dr James Robinson
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for creating the dashboard

—

% Lin


https://counterfactualcovid.azurewebsites.net/

