
GRAPL
A computational library for nonparametric

structural causal modelling, analysis and inference

Prof Max A. Little, UoB/MIT
maxl@mit.edu

mailto:maxl@mit.edu

Why we need a structural causal modelling library
❏ Intuitive language for arbitrarily complex structural causal models (SCMs)
❏ Model import/export
❏ Analysis of topological and causal relationships
❏ Automated derivation of any complex, factorized, non-parametric

distributions: joint, marginal, conditional, interventional
❏ Outputs for display publication/CAS
❏ Implementation in a widely-used language (Python)

❏ A simple, text-based domain-specific language (DSL) for DAGs and

ADMGs

❏ Derivation of factorized, marginalized nonparametric distributional

models for arbitrary DAGs

❏ Computation of interventional distributions in arbitrarily complex

DAGs/ADMGs

❏ Various algorithms for analysis of causal influence in DAGs/ADMGs (e.g.

c-components/districts, node interventions, local Markov conditional

independence relations, topological sorting)

❏ Latex format output distributions

GRAPL library: selected features

>>> import grapl.algorithms as algs
>>> import grapl.dsl as dsl

>>> grapl_obj = dsl.GraplDSL()
>>> dag_grapl = ' "Front door adjustment"; \
>>> X; Y; M; \
>>> X -> M; \
>>> M -> Y; \
>>> X <-> Y; '
>>> G = grapl_obj.readgrapl(dag_grapl)

>>> id_str, expr, isident = algs.idfixing(G, {'X'}, {'Y'})
>>> if isident:
>>> print(id_str) # p_{X}(Y)=\sum_{M,X'}[p(Y|M,X')p(M|X)p(X')]
>>> else:
>>> print('Interventional distribution not identifiable')

Example: Simple front-door ADMG

YX
M

How GRAPL works: under the hood
❏ admg.py: class ADMG() ADMG graph object and methods for

construction, topological analysis, manipulation

❏ dsl.py: class GraplDSL() A DSL language lexer and parser object,

implemented using PLY, for describing DAGs/ADMGs

❏ algorithms.py: Core causal inference algorithms: Richardson fixing,

DAG factorization, truncated factorization, local Markov independences,

Tian factorization

❏ expr.py: class Expr() Non-parametric distribution expression

object and methods for adding and substituting variables, fixing and

marginal fixing, cancelling common sub-expressions, marginalizing,

simplifying and converting to Latex strings

Selected GRAPL functions
algorithms.truncfactor

Truncated factorization ("g-formula") for DAGs.

Parameters:
G (ADMG) – DAG object representing the causal graph (must not have bidirects)
X (Set of Strings) – Interventional variables where each string is a random variable name
(must not be empty)
Y (Set of Strings) – Effect variables, each string is a random variable name (if empty, all
variables in G other than the set X)
prefactor (Boolean) – If True, joint distribution is Markov factored before fixing

Returns: (String, Expr, Boolean)
If G is a DAG, factored interventional distribution string, corresponding Expr object, and
True. Otherwise, returns '', None, False.

algorithms.localmarkov

Compute all local Markov independences for DAGs.

Parameters:
G (ADMG) – DAG object representing the causal graph (must not have bidirects)

Returns: (Set of Strings, Boolean)
If G is a DAG, set of strings representing Markov independences, True. Otherwise returns
empty set, False.

Selected GRAPL functions

Expr.cancel
An algorithm for cancelling variables in a distribution expression (Expr object). This seeks to
greedily match and remove terms appearing in both numerator and denominator of an
expression. Returns True if any changes to the expression occurred as a result, and False
otherwise.

Expr.marginal
An algorithm for marginalizing out variables in a distribution expression (Expr object).
Greedily removes variables appearing in both the numerator and the set of marginal
variables. Returns True if any changes to the expression occurred as a result, and False
otherwise.

Expr.simplify
An algorithm for simplifying a distribution (Expr object), by successive cancellation and
marginalization until a fixed point is reached. Returns True if simplifications were possible,
and False otherwise.

Selected GRAPL methods

Example: Complex ADMG

C

F
A

B

D

E
>>> import grapl.algorithms as algs
>>> import grapl.dsl as dsl

>>> grapl_obj = dsl.GraplDSL()
>>> G = grapl_obj.readgrapl(open(filename,'r').read())

>>> D = G.districts() # [{'A'},{'F'},{'B','D'},{'E','C'}]
>>> V = G.de({'B','F'}) # {'B','D','E','F'}
>>> dist_str, fac_expr = algs.admgfactor(G)
>>> print(dist_str)

Coming soon (v1.5)
❏ Conditional interventional distributions (c.f. IDC algorithm)
❏ Expressions for expectations e.g. ATEs, CATEs based on interventional

distributions
❏ Auto-generate numerical functions to compute empirical average/median

treatment effects, from data
❏ Automated derivation of bootstrap weights (c.f. causal bootstrapping)
❏ Input DAGs/ADMGs directly from vector graphical drawing software
❏ Requests …?

Thank you!

Github: https://github.com/max-little/GRAPL, contributions welcome.

Citation: Little, M. A., (2022). GRAPL: A computational library for nonparametric structural

causal modelling, analysis and inference. Journal of Open Source Software, 7(76), 4534,

https://doi.org/10.21105/joss.04534

Prof Max A. Little, UoB/MIT
maxl@mit.edu

https://github.com/max-little/GRAPL
https://doi.org/10.21105/joss.04534
mailto:maxl@mit.edu

