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Why we need a structural causal modelling library
❏ Intuitive language for arbitrarily complex structural causal models (SCMs)
❏ Model import/export
❏ Analysis of topological and causal relationships
❏ Automated derivation of any complex, factorized, non-parametric 

distributions: joint, marginal, conditional, interventional
❏ Outputs for display publication/CAS
❏ Implementation in a widely-used language (Python)



❏ A simple, text-based domain-specific language (DSL) for DAGs and 

ADMGs

❏ Derivation of factorized, marginalized nonparametric distributional 

models for arbitrary DAGs

❏ Computation of interventional distributions in arbitrarily complex 

DAGs/ADMGs

❏ Various algorithms for analysis of causal influence in DAGs/ADMGs (e.g. 

c-components/districts, node interventions, local Markov conditional 

independence relations, topological sorting)

❏ Latex format output distributions

GRAPL library: selected features



>>> import grapl.algorithms as algs
>>> import grapl.dsl as dsl

>>> grapl_obj = dsl.GraplDSL()
>>> dag_grapl = ' "Front door adjustment"; \
>>>   X; Y; M; \
>>>   X -> M; \
>>>   M -> Y; \
>>>   X <-> Y; '
>>> G = grapl_obj.readgrapl(dag_grapl)

>>> id_str, expr, isident = algs.idfixing(G, {'X'}, {'Y'})
>>> if isident:
>>>     print(id_str) # p_{X}(Y)=\sum_{M,X'}[p(Y|M,X')p(M|X)p(X')]
>>> else:
>>>     print('Interventional distribution not identifiable')

Example: Simple front-door ADMG
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How GRAPL works: under the hood
❏ admg.py: class ADMG() ADMG graph object and methods for 

construction, topological analysis, manipulation

❏ dsl.py: class GraplDSL() A DSL language lexer and parser object, 

implemented using PLY, for describing DAGs/ADMGs

❏ algorithms.py:  Core causal inference algorithms: Richardson fixing, 

DAG factorization, truncated factorization, local Markov independences, 

Tian factorization

❏ expr.py: class Expr() Non-parametric distribution expression 

object and methods for adding and substituting variables, fixing and 

marginal fixing, cancelling common sub-expressions, marginalizing, 

simplifying and converting to Latex strings



Selected GRAPL functions
algorithms.truncfactor

Truncated factorization ("g-formula") for DAGs.

Parameters:
G (ADMG) – DAG object representing the causal graph (must not have bidirects)
X (Set of Strings) – Interventional variables where each string is a random variable name 
(must not be empty)
Y (Set of Strings) – Effect variables, each string is a random variable name (if empty, all 
variables in G other than the set X)
prefactor (Boolean) – If True, joint distribution is Markov factored before fixing

Returns: (String, Expr, Boolean)
If G is a DAG, factored interventional distribution string, corresponding Expr object, and 
True. Otherwise, returns '', None, False.



algorithms.localmarkov

Compute all local Markov independences for DAGs.

Parameters:
G (ADMG) – DAG object representing the causal graph (must not have bidirects)

Returns: (Set of Strings, Boolean)
If G is a DAG, set of strings representing Markov independences, True. Otherwise returns 
empty set, False.

Selected GRAPL functions



Expr.cancel
An algorithm for cancelling variables in a distribution expression (Expr object). This seeks to 
greedily match and remove terms appearing in both numerator and denominator of an 
expression. Returns True if any changes to the expression occurred as a result, and False 
otherwise.

Expr.marginal
An algorithm for marginalizing out variables in a distribution expression (Expr object). 
Greedily removes variables appearing in both the numerator and the set of marginal 
variables. Returns True if any changes to the expression occurred as a result, and False 
otherwise.

Expr.simplify
An algorithm for simplifying a distribution (Expr object), by successive cancellation and 
marginalization until a fixed point is reached. Returns True if simplifications were possible, 
and False otherwise.

Selected GRAPL methods



Example: Complex ADMG
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>>> import grapl.algorithms as algs
>>> import grapl.dsl as dsl

>>> grapl_obj = dsl.GraplDSL()
>>> G = grapl_obj.readgrapl(open(filename,'r').read())

>>> D = G.districts() # [{'A'},{'F'},{'B','D'},{'E','C'}]
>>> V = G.de({'B','F'}) # {'B','D','E','F'}
>>> dist_str, fac_expr = algs.admgfactor(G)
>>> print(dist_str)



Coming soon (v1.5)
❏ Conditional interventional distributions (c.f. IDC algorithm)
❏ Expressions for expectations e.g. ATEs, CATEs based on interventional 

distributions
❏ Auto-generate numerical functions to compute empirical average/median 

treatment effects, from data
❏ Automated derivation of bootstrap weights (c.f. causal bootstrapping)
❏ Input DAGs/ADMGs directly from vector graphical drawing software
❏ Requests …?



Thank you!

Github: https://github.com/max-little/GRAPL, contributions welcome.
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