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MORE evidence smoking may cut the
risk of coronavirus: Review of 28
studies shows number of smokers
among hospitalised patients is 'lower
than expected' as expert admits the
mounting findings are 'weird'



Motivating example

e The findings were very weird indeed, flying in the face of
medical knowledge and confounding experts

e Yetthe finding was irrefutable: if you smoked the data said you
were less at risk of COVID-19

Should we all start smoking?

See Collider bias undermines our understanding of COVID-19 disease risk and severity, Griffith et al.


https://www.nature.com/articles/s41467-020-19478-2

Motivating example

e At the start of the pandemic, only healthcare workers (who smoke
less) and people with severe COVID-19 symptoms were tested.

e Smokers with no COVID-19 symptoms were massively under
represented in the observed data.

® Hence, of those tested, the non-smokers are more likely to have
COVID-19 than smokers.



Motivating example

e In our example any action based on these correlations such as
how patients with or with COVID-19 who smoke are treated
would not increase patient survival.

Take home: Relying on correlations extracted from observational
data can lead to embarrassing, costly, and dangerous mistakes.

e TJo overcome this, we need to understand cause and effect



How do we understand cause and effect?

e Standard approach is to run randomised control trial (A/B test)

e This would certainly help us understand the average causal effect of
smoking on COVID-19 risk

e But much of the time A/B tests can’t be performed. At Spotify A/B tests could
be too damaging to user experience:
o “Do app crashes cause churn?”
o “Does podcast consumption cause retention?”

® This is where causal inference comes in!

e But things get even more tricky when more than one action or treatment
occurs at the same time...



Disentangling joint-interventions

e In many applications, only a single intervention is possible at a given time,
or interventions are applied one after another in a sequential manner

e However, in some areas, multiple interventions are concurrently applied:

o in medicine, patients that possess many commodities may have to be
simultaneously treated with multiple prescriptions;

o in computational advertising, people may be targeted by multiple
concurrent campaigns, and so on.

o during the pandemic, many interventions were applied at same time,
e.g. mask wearing, work from home, schools closed, etc.

e What can we do in this case? First, let’s define causal models and the
Causal Hierarchy...
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Causal Models

* Observed terms are deterministic
function of parents and latent “noise”

* Noise terms are distributed according to
latent distribution

cA= f(C, UA), Ua~ p(UA)

* These jointly generate P(A|C)



What can we do with them

Inference Hierarchy
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Acting (interventions)
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given

P(C=T|do(S=T))

Simulate randomised controlled trial



Learning Problem I: disentangling interventions
at 2nd layer

Given samples from observational and joint-interventions data

E[Y|Xz = a:z-,Xj = iL‘j,C = C], and E[Y'dO(Xz — .’Bz',Xj = iL'j),C = C]

When can we learn, or identify, conditional average causal
effects of single-interventions

E[Y'dO(XZ = CIL,;),Xj — :Ej,C — C], or E[Y'XZ — IL'Z',dO(Xj — CCj),C — C]



Learning Problem I: disentangling interventions
at 2nd layer

Given samples from observational and joint-interventions data

E[Y|Xz = QTZ',X]' = IL']',C = C], and E[Y'ElO(Xz = fl?z',Xj = CL'])]C = C]

When can we learn, or identify, conditional average causal
effects of single-interventions

IE[Y|E10(Xz- _ zﬂ X; =2;,C =d, orE[Y|X; = a:i,[do(xj _ zj)} C=d




|dentifiability

A quantity is identifiable from a specific type of data if every
model that agrees on that data produces the same value for the
quantity

Hence, if two models agree on the data, but not on the quantity,
then it is not identifiable from that data



Our quantity is non-ldentifiable in general...

M M’
X, = U, X, = Uy u1=U2=Uy
Xy =Xils Xs=1s perfectly correlated bits

Y = X1 XoUy Y =X XUy

Intuition:
e All variables are binary, and all latents are perfectly correlated. So in model
M,onehas X 2=X 1.U 1=U1U 2=U2U 2=U 2

e So observationally, the models look the exact same! Moreover as Y is the
same function of X’s in both models, joint-interventions are the same

e But when we intervene on X_1, X_2 behaves differently in both models, as
X_ 2 doesn’t causally depend on X_1in M’, but it does in M.

e So observations and joint-interventions are not enough to fully constrain
single-interventions. That is, we need more assumptions for identifiability



Disentangling joint-interventions: Identifiability?

M M’
U1l=U2=Uy
Xi=U X1=U - — —
X; _ Xll s X; _ U; perfectly correlated bits

Y = X1 XUy Y =X XUy

(a) Observational joint distribution. (b) Joint interventional distribution.
P(X1,X,,Y) Y=0 Y=1 P(Y|do(X1, X2)) Y=0 Y=1
XI,XZZO,O 1—p 0 do(X1=0,X2:O) 1 0
Xl,XQZO,l 0 0 do(X1:0,X2:1) 1 0
X1,X2=1,0 0 0 do(X; =1,X52=0) 1 0
Xl,ngl,l 0 p dO(Xlzl,Xzzl) 1—p P

(c) Interventional distribution on Xo.

P(Y,Xi|do(X3)) Y=0 Y=1

Xi1=0 1- 0
X:1=0 1- 0
do(X=1) 2 “oF




It is idenitifiable from extra assumptions

Theorem 2 (Identifiability of disentangled condi-
tional average treatment effects in additive noise mod-
els with symmetric structure).

Let M = ({C,X,Y},U, f,Py) be an SCM, where

Xz=f1(C)+Uz, Vi:-=1 K
Y = fY(C’X)+UY>

C 1L U and Py ~ N(0,X). The estimand
E[Y|do(X;), C| is identifiable from the conjunction of two
data regimes:

1. the observational distribution,

2. any interventional distribution on a set of treatments
X € X that holds X;: X; € Xins.



It is idenitifiable from extra assumptions

Theorem 2 (Identifiability of disentangled condi-
tional average treatment effects in additive noise mod-
els with symmetric structure).

Let M = ({C,X,Y},U, f,Py) be an SCM, where

Y = fy(C,X) + Uy,

C 1L U, and Py ~ N(0,X). The es
E[Y|do(X;), C| is identifiable from the conjunction of
data regimes:

1. the observational distribution, (This additive noise model still \
allows for correlations and
interactions between
treatments, through observed
kand unobserved confounders )

2. any interventional distribution on a set of treatments
X € X that holds X;: X; € Xins.




Can these assumptions be weakened?

The 2 (Identifiability of disentangled condi-
onal average treatment effects in additive noise mod-
els with symmetric structure).

Let M= {{C,X,Y},U, f,Py) be an SCM, where

Y= fY(C7X)+UY7

and Py ~ N(0,%). The estimand E[Y|do(X;),C] is
identifiable from the conjunction of two data regimes:

1. the observational distribution,

2. any interventional distribution on a set of treat-
ments X, € X that holds X;: X; € X,;.



Can these assumptions be weakened?

Theorem 1 (Identifiability of disentangled condi-
tional average treatment effects in additive noise mod-

els with a causal dependency between treatments).
Let M = ({C,X,Y},U, f,Py) be an SCM, where

X; = fi(C)+ U;
X; = £;,(C, X:) + U
Y = fY(C)X) + UY)

and Py ~ N(0,X). The estimand E[Y|do(X;),C] is
identifiable from the conjunction of two data regimes:

1. the observational distribution,

2. the joint interventional distribution on (X;, X;).



In summary...

(a) Only E[Y|C = ¢,do(X> = 2)] is (b) Only E[Y|C = ¢,do(X5 = x3)] is (c) All E[Y|C = ¢,do(X; = ;)] are

generally identifiable. generally identifiable. generally identifiable.

Figure 2: Causal Graphs illustrating under which conditions the single-variable causal effect on the outcome
E[Y|C = ¢,do(X; = ;)] is identifiable from the observational and joint interventional data regimes.



Learning algorithm based on results

L(z;;0,%) = Pu(z; — fi(PA(z:); 0); X)
Estimating an SCM from a combination of
observational and interventional
data bOI|§ dOYVh to: _ Algorithm 1 SCM Estimation for Symmetric ANMs
1. estimating the structural equations, and Teouts Dataset D
. . . o . npu atase A
2. estimating the noise distribution Output: Parameter estimates 8, 5

1: Initialise § and 5
E[Y|C; do(Xin); Xobs] = fy (C; X) +E[Uy | Xops)- 2: while not converged do
// Solve for § with fixed X
4:  Optimise log-likelihood in Eq. 7
We employ an Expectation-Maximisation-style 5: // Solve for % with fixe * ~
iterative algorithm to achieve this 6 Estimate 8 fom [ =% — flx;0)
7

: return 9 5

Full details in the paper...



Presented at NeurlPS Causal Inference & Machine
Learning workshop and will be on arXiv soon!

Disentangling causal effects from sets of interventions in the
presence of unobserved confounders
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Abstract

The ability to answer causal questions is
crucial in many domains, as causal infer-
ence allows one to understand the impact
of interventions. In many applications, only
a single intervention is possible at a given
time. However, in some important areas,
multiple interventions are concurrently ap-
plied. Disentangling the effects of single in-
terventions from jointly applied interventions
is a challenging task—especially as simulta-
neously applied interventions can interact.
This problem is made harder still by un-
observed confounders, which influence both
treatments and outcome. We address this
challenge by aiming to learn the effect of a
single-intervention from both observational
data and sets of interventions. We prove
that this is not generally possible, but pro-
vide identification proofs demonstrating that
it can be achieved in certain classes of addi-
tive noise models—even in the presence of un-
observed confounders. Importantly, we show
how to incorporate observed covariates and
learn heterogeneous treatment effects condi-
tioned on them for single-interventions.

INTRODUCTION

manner. However, in some important areas, multiple
interventions are concurrently applied. For instance,
in medicine, patients that possess many commodities
may have to be simultaneously treated with multi-
ple prescriptions; in computational advertising, peo-
ple may be targeted by multiple concurrent campaigns;
and in dietetics, the nutritional content of meals can be
considered a joint intervention from which we wish to
learn the effects of individual nutritional components.

Disentangling the effects of single interventions from
jointly applied interventions is a challenging task—
especially as simultaneously applied interventions can
interact, leading to consequences not seen when con-
sidering single interventions separately. This problem
is made harder still by the possible presence of unob-
served confounders, which influence both treatments
and outcome. This paper addresses this challenge, by
aiming to learn the effect of a single-intervention from
both observational data and sets of interventions. We
prove that this is not generally possible, but provide
identification proofs demonstrating it can be achieved
in certain classes of non-linear causal models with ad-
ditive Gaussian noise—even in the presence of un-
observed confounders. Importantly, we show how to
incorporate observed covariates, which can be high-
dimensional, by learning heterogeneous treatment ef-
fects conditioned on them for single-interventions.

Our main contributions are:

1. A proof that without restrictions on the causal




Experiments: How does our method compare to just

performing regression?

As amount of data
increases, our method can
accurately disentangle joint
interventions even in the
presence of unobserved
confounding

r

Observational do(Xp) do(X7) do(X3)
do(Xo, Xo) do(Xo, X3)
do(X1, Xo) do(X3, X3) do(Xo, X1, X»)

do(Xo, X1, X3)
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Experiments: How robust is learning to increasing
confounding strength?

Using semi-synthetic data
derived from a stroke trial with
multiple concurrent treatment

100.

Mean Absolute Error

dosages, we see our method is

H H 0.00 0.25 0.50 0.75 0.95
robust to increasing levels of N .- S—-—
unobserved confounding NN Regression WS Symm. ANM Optimal



Examples of disentangling problem at Spotify

® There are a range of playlists/albums/podcasts that are recommended

to a user at a given time, what’s the individual impact of each one?

® There are a collection of actions an artist can take to build their
fanbase and improve their career, which ones have the biggest effect
for a given artist?

And many, many more....



Motivating example Il

e Diarrheal diseases are a leading cause of disease and mortality in the developing world

e To reduce diarrheal diseases in children in the Busia district of Western Kenya, a local NGO
built protective cement structures around a randomly selected group of springs

e Researchers from Abdul Latif Jameel Poverty Action Lab (JPAL), worked with the NGO to
estimate average treatment effect of intervention



Motivating example Il

e They found that spring protection significantly reduces diarrhea for children
under age three by 25%

e Should we scale this intervention up? Interventions are expensive, need to
be certain it will help as expected

e To really answer this, need to answer “How likely is it that the negative

outcome was caused by the exposure to diarrhea, and not something else?”

Question: “Given a child developed diarrhea after drinking from an unprotected
spring, would they have still developed it if they drank from a protected spring?”

e But how do we answer this question??



What can we do with them

Inference Hierarchy




@ Some genetic factor
o B
Smoking f S ) = Cancer
, T

- given : 2

( \ and if subject

! Imagining (counterfactuals) | Probability of subject subject has was made to

\ / not having cancer cancer not smoke

: g i ] ]
Counterfactuals are “what-if’ questions, very I 11T L '
owerful in personalised decision makin s - —

P p g P(C = F|C =T,do(S = F))

“Given subject has cancer, what is the chance they
wouldn’t if they didn’t smoke?”



Counterfactual Inference compute
P(C=F | C=T, S=T, do(S=F)):

1. Abduction: update P(A) to
P(A | S=T, C=T)

2. Action: Apply do(.) operator to
force S=F

3. Predict: Compute P(C=F) in model
with do(S=F) & P(A | S=T, C=T)



Example, compute: P(Reduce Symptoms | Observe Symptoms, do(Cure Disease))

shortness
of breath



- F N

shortness
of breath Observed



// | \ A
Abduction

shortness
of breath Observed
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diabetes angina

shortness
of breath Observed
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Improving the accuracy of medical diagnosis
with causal machine learning

1™ Ciaran M. Lee"? & Saurabh Johrit

\

diabetes

Jonathan G. Richens(

Machine learning promises to revolutionize clinical decision making and diagnosis. In medical
diagnosis a doctor aims to explain a patient’s symptoms by determining the diseases causing
them. However, existing machine learning approaches to diagnosis are purely associative,
identifying diseases that are strongly correlated with a patients symptoms. We show that this

ey inability to disentangle correlation from causation can result in sub-optimal or dangerous

v diagnoses. To overcome this, we reformulate diagnosis as a counterfactual inference task and

derive counterfactual diagnostic algorithms. We compare our counterfactual algorithms to

;':' re 'é £ C i ’ the standard associative algorithm and 44 doctors using a test set of clinical vignettes. While

the associative algorithm achieves an accuracy placing in the top 48% of doctors in our
cohort, our counterfactual algorithm places in the top 25% of doctors, achieving expert
clinical accuracy. Our results show that causal reasoning is a vital missing ingredient for
applying machine learning to medical diagnosis.
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How efficient is counterfactual inference?

Standard counterfactual inference
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Efficient counterfactual inference with Twin Networks
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Efficient counterfactual inference with Twin Networks

Compute counterfactual

c @ u, C* Standard: P( D | D=T, do(A=F))
/ 1. Abduction
2. Action
A \ / B A* B* 3. Prediction
u, \ /
D / \ D*

Twin: P(D* | D=T, A*=F )
Bayesian Inference on Twin network



Efficient counterfactual inference with Twin Networks

/\
VAN N N\

NV NN,/

Update, make changes, & predict Make changes in one, & predict



Computational advantage of Twin Networks

Effect of graph size Effect of intervention topology

2.0

0.5

0.0

-0.5

3 1 5 6 7 N 9 10 11 12 0.0 0.2 0.4 0.6 0.8
Number of nodes (30% density) Topological position parameter of intervention (|V| = 10)

e Twin networks aren’t a manifestly new way of doing counterfactual inference, but
their graphical nature exposes ways to speed up the inference, either via
parallelisation or by exploiting conditional independence relations

e Importantly, their graphical nature makes them very amenable to deep learning




Learning problem II: Deep Twin Networks
Learning counterfactual distributions from 3rd layer

O —— A

VA PN

U

e Graphical nature of twin networks makes them very amenable to deep learning

e Yields simple neural network architectures that, when trained, yield full causal
models that are capable of counterfactual inference



Training Deep Twin Networks
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X > Y

L

e What’s the label of the red node? E( Y* | X*, Z) in Counterfactual network
corresponds to E(Y | do(X), Z) in Factual network

e Estimate E(Y | do(X), Z) and use as Y* label, then train Deep Twin Net by minimising
MSE on both heads



Training Deep Twin Networks

X* > Y*
A .

/
/N

o Write Y=f(X, Z, U_Y) where U_Y~q(U_Y) as:

\ 4
Y

Y=f(X, Z, g(U_Y’)) where U_Y=g(U_Y’) and U_Y’~N(0,1)

e Thus we want to learn functions f and g by sampling U_Y’~N(0,1) and passing
through network with X, X* and Z.



Now, let’s compute some counterfactuals!

Let’s introduce some new notation:

Yx=x is the value of Y when we intervene with do(X=x)
We can now introduce some new causal questions of interest:
PYx=0=0]|Y =1, X=1, Z), forY, X binary.
This is the Probability of Necessity: the probability event Y
would not have occurred without event X occurring, given that

X, Y did in fact occur in context Z

This will help us answer water spring problem

X, N\



Are counterfactuals identifiable?

U

Ny
B =g(A,U),U~q(U)

Aif U=0
0if U=1
11f U=2
NOTA if U=3

This model is completely specified by q(U):
That is, by 3 parameters




Are counterfactuals identifiable?

U

/

A » B”
B =g(A, U), U~q(U)

Aif U=0
0if U=1
1if U=2
NOTA if U=3

Observations/Interventions { P(B | A) } only
restricts 2 parameters



PB=0[A=0)=¢qU=0)+qU=1),
PB=0|A=1)=qU=1)+qU=3).

Can never use P(BJA) to learn q(U=0), hence counterfactual not identifiable
even though we know all observations & interventions

Hence two models which agree on all observations and interventions can give different
answers to the same counterfactual question



By constraining functions, can identify counterfactuals

Monotonicity says that presence of risk factor never
decreases risk of disease:

“It’s not possible to have risk factor and zero probability of
developing disease”

U
/

Risk Disease

Factor



Imposing identifiability constraints

e Enforce during training that functions learned by network satisfy identifiability. In case of
binary variables this amounts to enforcing monotonicity

e |n an updated version of our paper (coming to arXiv soon!) we explore new constraints
on counterfactuals for categorical variables!



The full technical details are in our paper...

Algorlthm 1= Training a deep twin network AlgOI‘ithm 2: Counterfactual Inference

Input: X: Treatment, Uy : Noise, Z: Confounders, X *: Counterfactual Treatment;
Input: X: Treatment, Z: Confounders, X *: Counterfactual Treatment; Y": Outcome; npu rea*men 5 o1se ontoun er_s Our_l ertactual trea m.en
Y': Outcome Y *: Counterfactual Outcome; F : Trained deep twin network; Q: desired

C: DAG of causal structure; I: loss imposing identifiability constraint courlterBstuiliquery (inili example, Yo = g [ X = ¥ = g5 2

Output: F: trained deep twin network Output: P(Q): Estimated distribution of Q.

1: Set F’s architecture to match twin network representation of C, as in Figure 2 1: Convert P(Q) to twin network distribution: P(Yyx_,» = 4" | X = 2,Y =
2: To obtain label for counterfactual head, first estimate P(Z|X) 5 gl = ) &5 *P(Y*/ =9 | X = ol :*y, X*, =]

3: Then, for x, z find 2’ = with closest P(2’|z) to P(z|x) 3 E)Orn;pu;e, IZ(:DZi d|0X = S e S

4: Sety* « y(2’,x*), yielding training dataset D := {X, X*, Z;Y,Y*} 4: fo’r ['ij]N ~ N(0,1), N € Ndo

5: for z,x*,z;y,y" € Dand Uy NN(O, 1) do 5: Sample (g, §* = F(x,2’, uy, z)) such that § = v, for example using
6: y/’ y'* — F((E, x*, Uy s Z) Rejection sampling, Importance sampling, etc.

/s Train F by minimizing M SE(y,vy’') + MSE(y*, y/ *) 4+ I(D) g Frequency of these samples for which §* = v’ yields P(Q)

8: end for 8 ende;::: for




Should we protect water springs in this manner?

Method P(N) P(S) P(N&S)

KW Median Child Cuellar et al. 2020 0.12 £+ 0.01 - -

KW TN Median Child 0.13598 +=0.049 0.09811 +0.031 0.31778 +=0.012
KW TN Test Set 0.06273 +=0.020 0.03914 4+ 0.016 0.08521 £+ 0.034

P(Necessity) = P(Diarrhoearrotect springs=No = NO | Diarrhoea = Yes, Protect Springs=Yes, 2)
P(Sufficiency) = P(Diarrhoearrotect springs=ves = Yes | Diarrhoea = No, Protect Springs=No, 2Z)
P(NeC. & SUﬁ) = P(DiarrhoeaProtect springs=No = NO, Diarrhoearrotect Springs=Yes = YE&S | Z)

e Exposure to water-based bacteria is not a necessary, sufficient, nor a necessary-and-sufficient
condition to exhibit diarrhoea.

e This provides evidence that protecting water springs in this manner has little effect on the
development of diarrhoea in children in these populations



Check out our paper to dive deeper arXiv:2109.01904

Estimating the probabilities of causation via deep monotonic twin networks

Athanasios Vlentzos'*,
Bernhard Kainz 2, Ciardn M. Gilligan-Lee’

1 BioMedIA, Imperial College London
2 FAU Erlangen-Nuremberg, * Spotify & University College London

Abstract

There has been much recent work using machine learning to
answer causal queries. Most focus on interventional queries,
such as the conditional average treatment effect. However,
as noted by Pearl, interventional queries only form part
of a larger hierarchy of causal queries, with counterfactu-
als sitting at the top. Despite this, our community has not
fully succeeded in adapting machine learning tools to an-
swer counterfactual queries. This work addresses this chal-
lenge by showing how to implement twin network counter-
factual inference—an alternative to abduction, action, & pre-
diction counterfactual inference—with deep learning to esti-
mate counterfactual queries. We show how the graphical na-
ture of twin networks makes them particularly amenable to
deep learning, yielding simple neural network architectures
that, when trained, are capable of counterfactual inference.
Importantly, we show how to enforce known identifiability
constraints during training, ensuring the answer to each coun-
terfactual query is uniquely determined. We demonstrate our
approach by using it to accurately estimate the probabilities
of causation—important counterfactual queries that quantify
the degree to which one event was a necessary or sufficient
cause of another—on both synthetic and real data.

1 Introduction

Counterfactual queries establish if certain outcomes
would have occurred had some precondition been differ-
ent. Given evidence £ = e, counterfactual inference al-
lows one to compute the probability a different outcome
& = ¢’ would have occurred—counter-to-the-fact £ = e—
had some intervention taken place. The crucial difference
between counterfactual and interventional queries is that the
evidence the counterfactual query is “counter-to” can con-
tain the variables we wish to intervene on or predict. An
example counterfactual query is “Given I currently have a
headache, would I not, had I taken medicine?”. An inter-
ventional query is “What impact would medicine have on
my headache?”. The counterfactual query explicitly uses the
evidence a headache is present, and asks whether medicine
would have changed this fact. The interventional query asks
what effect medicine would have on a headache for a given
individual, but does not make use of the fact that a headache
is currently present. Counterfactual inference has been ap-
plied to difficult problems in high profile sectors such as
medicine (Richens, Lee, and Johri 2020; Oberst and Sontag
2019), legal analysis (Chockler and Halpern 2004; Lagnado,
Gerstenberg, and Zultan 2013), fairness (Kusner et al. 2017;
Kilbertus et al. 2017), explainability (Galhotra, Pradhan, and
Salimi 2021), planning in reinforcement learning (Forney,
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Abstract

There has been much recent work using machine learning to
answer causal queries. Most focus on interventional queries,
such as the conditional average treatment effect. However,
as noted by Pearl, interventional queries only form part
of a larger hierarchy of causal queries, with counterfactu-
als sitting at the top. Despite this, our community has not
fully succeeded in adapting machine learning tools to an-
swer counterfactual queries. This work addresses this chal-
lenge by showing how to implement twin network counter-
factual inference—an alternative to abduction, action, & pre-
diction counterfactual inference—with deep learning to esti-
mate counterfactual queries. We show how the graphical na-
ture of twin networks makes them particularly amenable to
deep learning, yielding simple neural network architectures
that, when trained, are capable of counterfactual inference.
Importantly, we show how to enforce known identifiability
constraints during training, ensuring the answer to each coun-
terfactual query is uniquely determined. We demonstrate our
approach by using it to accurately estimate the probabilities
of causation—important counterfactual queries that quantify
the degree to which one event was a necessary or sufficient
cause of another—on both synthetic and real data.

1 Introduction

Counterfactual queries establish if certain outcomes
would have occurred had some precondition been differ-
ent. Given evidence £ = e, counterfactual inference al-
lows one to compute the probability a different outcome
£ = ¢’ would have occurred—counter-to-the-fact £ = e—
had some intervention taken place. The crucial difference
between counterfactual and interventional queries is that the
evidence the counterfactual query is “counter-to” can con-
tain the variables we wish to intervene on or predict. An
example counterfactual query is “Given I currently have a
headache, would I not, had I taken medicine?”. An inter-
ventional query is “What impact would medicine have on
my headache?”. The counterfactual query explicitly uses the
evidence a headache is present, and asks whether medicine
would have changed this fact. The interventional query asks
what effect medicine would have on a headache for a given
individual, but does not make use of the fact that a headache
is currently present. Counterfactual inference has been ap-
plied to difficult problems in high profile sectors such as
medicine (Richens, Lee, and Johri 2020; Oberst and Sontag
2019), legal analysis (Chockler and Halpern 2004; Lagnado,
Gerstenberg, and Zultan 2013), fairness (Kusner et al. 2017;
Kilbertus et al. 2017), explainability (Galhotra, Pradhan, and
Salimi 2021), planning in reinforcement learning (Forney,
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Examples of counterfactuals at Spotify

® Which Playlists to update: which playlists Z “need” to be updated?

P(Yx=update = engaged, Yx=no update = NOt engaged | 2)

® New content to enjoy: If user Z listened to specific content and
enjoyed it, which other content would they also have enjoyed?

P(Yx=new content = engage | Y = engage, X = current content, 2)

And many more....



Conclusion

e Many interesting causal inference problems need to be solved to address important
problems in industry and beyond, such as disentangling multiple treatments

e Range of counterfactual questions that yield invaluable insights beyond just average, or
even heterogeneous, treatment effects

e Deep twin networks provide simple way to use ML to learn causal models and answer
counterfactual questions

e Many more causal inference applications at Spotify beyond what we’ve discussed today

e We’re hiring, so get in touch if you’re interested!

ciaranl@spotify, or @quantumciaran
ciaran.lee@ucl.ac.uk



