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Motivating example I



Motivating example

● The findings were very weird indeed, flying in the face of 
medical knowledge and confounding experts 

● Yet the finding was irrefutable: if you smoked the data said you 
were less at risk of COVID-19

Should we all start smoking?

See Collider bias undermines our understanding of COVID-19 disease risk and severity, Griffith et al.

https://www.nature.com/articles/s41467-020-19478-2


Motivating example

● At the start of the pandemic, only healthcare workers (who smoke 
less) and people with severe COVID-19 symptoms were tested.

● Smokers with no COVID-19 symptoms were massively under 
represented in the observed data. 

● Hence, of those tested, the non-smokers are more likely to have 
COVID-19 than smokers.



Motivating example

● In our example any action based on these correlations such as 
how patients with or with COVID-19 who smoke are treated 
would not increase patient survival.

Take home: Relying on correlations extracted from observational 
data can lead to embarrassing, costly, and dangerous mistakes.

● To overcome this, we need to understand cause and effect



How do we understand cause and effect?

● Standard approach is to run randomised control trial (A/B test) 

● This would certainly help us understand the average causal effect of 
smoking on COVID-19 risk

● But much of the time A/B tests can’t be performed. At Spotify A/B tests could 
be too damaging to user experience: 
○ “Do app crashes cause churn?” 
○ “Does podcast consumption cause retention?”

● This is where causal inference comes in!

● But things get even more tricky when more than one action or treatment 
occurs at the same time...



Disentangling joint-interventions

● In many applications, only a single intervention is possible at a given time, 
or interventions are applied one after another in a sequential manner
 

● However, in some areas, multiple interventions are concurrently applied:

○ in medicine, patients that possess many commodities may have to be 
simultaneously treated with multiple prescriptions; 

○ in computational advertising, people may be targeted by multiple 
concurrent campaigns, and so on.

○ during the pandemic, many interventions were applied at same time, 
e.g. mask wearing, work from home, schools closed, etc.

● What can we do in this case? First, let’s define causal models and the 
Causal Hierarchy…



Causal Models

• Observed terms are deterministic 
function of parents and latent “noise”

• Noise terms are distributed according to 
latent distribution

• A = f(C, uA),  uA ~ p(uA)

• These jointly generate P(A|C)



Counterfactual Inference compute 
the following

P(Y=1 | Y=0, X=0, do(X=1)):

1. Abduction: update P(Z) to P(Z | 
X=0, Y=0)

2. Action: Apply do(.) operator to
    force X=1

3. Predict: Compute P(Y=1) in  
model with do(X=1) & P(Z |            

X=0, Y=0)

X Y

Z







Learning Problem I: disentangling interventions 
at 2nd layer  

Given samples from observational and joint-interventions data

When can we learn, or identify,  conditional average causal 
effects of single-interventions



Learning Problem I: disentangling interventions 
at 2nd layer  

Given samples from observational and joint-interventions data

When can we learn, or identify,  conditional average causal 
effects of single-interventions



Identifiability

A quantity is identifiable from a specific type of data if every 
model that agrees on that data produces the same value for the 

quantity

Hence, if two models agree on the data, but not on the quantity, 
then it is not identifiable from that data



Our quantity is non-Identifiable in general…

U_1 = U_2 = U_y 
perfectly correlated bits

Intuition: 
● All variables are binary, and all latents are perfectly correlated. So in model 

M, one has X_2 = X_1.U_1 = U_1.U_2 = U_2.U_2 = U_2

● So observationally, the models look the exact same! Moreover as Y is the 
same function of X’s in both models, joint-interventions are the same

● But when we intervene on X_1, X_2 behaves differently in both models, as 
X_2 doesn’t causally depend on X_1 in M’, but it does in M.

● So observations and joint-interventions are not enough to fully constrain 
single-interventions. That is, we need more assumptions for identifiability



Disentangling joint-interventions: Identifiability?

U_1 = U_2 = U_y 
perfectly correlated bits



It is idenitifiable from extra assumptions



It is idenitifiable from extra assumptions

This additive noise model still 
allows for correlations and 
interactions between 
treatments, through observed 
and unobserved confounders



Can these assumptions be weakened?



Can these assumptions be weakened?



In summary…



Learning algorithm based on results

Estimating an SCM from a combination of 
observational and interventional
data boils down to:
1. estimating the structural equations, and
2. estimating the noise distribution

We employ an Expectation-Maximisation-style 
iterative algorithm to achieve this

Full details in the paper…



Presented at NeurIPS Causal Inference & Machine 
Learning workshop and will be on arXiv soon!



Experiments: How does our method compare to just 
performing regression?

As amount of data 
increases, our method can 
accurately disentangle joint 
interventions even in the 
presence of unobserved 
confounding 



Experiments: How robust is learning to increasing 
confounding strength?

Using semi-synthetic data 
derived from a stroke trial with 
multiple concurrent treatment 
dosages, we see our method is 
robust to increasing levels of 
unobserved confounding 



• There are a range of playlists/albums/podcasts that are recommended 
to a user at a given time, what’s the individual impact of each one?

• There are a collection of actions an artist can take to build their 
fanbase and improve their career, which ones have the biggest effect 
for a given artist?

And many, many more….

Examples of disentangling problem at Spotify



Tech Learning Tech University

Motivating example II

● Diarrheal diseases are a leading cause of disease and mortality in the developing world

● To reduce diarrheal diseases in children in the Busia district of Western Kenya, a local NGO 
built protective cement structures around a randomly selected group of springs

● Researchers from Abdul Latif Jameel Poverty Action Lab (JPAL), worked with the NGO to 
estimate average treatment effect of intervention



Tech Learning Tech University

Motivating example II
● They found that spring protection significantly reduces diarrhea for children 

under age three by 25%

● Should we scale this intervention up? Interventions are expensive, need to 
be certain it will help as expected

● To really answer this, need to answer “How likely is it that the negative 
outcome was caused by the exposure to diarrhea, and not something else?”

Question: “Given a child developed diarrhea after drinking from an unprotected 
spring, would they have still developed it if they drank from a protected spring?”

● But how do we answer this question??



Counterfactual Inference compute 
the following

P(Y=1 | Y=0, X=0, do(X=1)):

1. Abduction: update P(Z) to P(Z | 
X=0, Y=0)

2. Action: Apply do(.) operator to
    force X=1

3. Predict: Compute P(Y=1) in  
model with do(X=1) & P(Z |            

X=0, Y=0)

X Y

Z







Example, compute: P(Reduce Symptoms | Observe Symptoms, do(Cure Disease))





















● Twin networks aren’t a manifestly new way of doing counterfactual inference, but 
their graphical nature exposes ways to speed up the inference, either via 
parallelisation or by exploiting conditional independence relations

● Importantly, their graphical nature makes them very amenable to deep learning



Learning problem II: Deep Twin Networks 
Learning counterfactual distributions from 3rd layer

● Graphical nature of twin networks makes them very amenable to deep learning 

● Yields simple neural network architectures that, when trained, yield full causal 
models that are capable of counterfactual inference



Training Deep Twin Networks 

● What’s the label of the red node? E( Y* | X*, Z) in Counterfactual network 
corresponds to  E( Y | do(X), Z) in Factual network

● Estimate E( Y | do(X), Z) and use as Y* label, then train Deep Twin Net by minimising 
MSE on both heads



Training Deep Twin Networks 

● Write Y=f(X, Z, U_Y) where U_Y~q(U_Y) as: 

Y=f(X, Z, g(U_Y’)) where U_Y=g(U_Y’) and U_Y’~N(0,1)
 

● Thus we want to learn functions f and g by sampling U_Y’~N(0,1) and passing 
through network with X, X* and Z.



Let’s introduce some new notation: 

YX=x  is the value of Y when we intervene with do(X=x)

We can now introduce some new causal questions of interest:

P(YX=0 = 0 | Y = 1, X=1, Z),  for Y, X binary.

This is the Probability of Necessity: the probability event Y 
would not have occurred without event X occurring, given that 
X, Y did in fact occur in context Z

This will help us answer water spring problem 

X Y

ZNow, let’s compute some counterfactuals!











Imposing identifiability constraints 

● Enforce during training that functions learned by network satisfy identifiability. In case of 
binary variables this amounts to enforcing monotonicity

● In an updated version of our paper (coming to arXiv soon!) we explore new constraints 
on counterfactuals for categorical variables! 



The full technical details are in our paper…



P(Necessity) =  P(DiarrhoeaProtect Springs=No = No | Diarrhoea = Yes, Protect Springs=Yes, Z)

P(Sufficiency) =  P(DiarrhoeaProtect Springs=Yes = Yes | Diarrhoea = No, Protect Springs=No, Z)

P(Nec. & Suff.) =  P(DiarrhoeaProtect Springs=No = No, DiarrhoeaProtect Springs=Yes = Yes  | Z)

● Exposure to water-based bacteria is not a necessary, sufficient, nor a necessary-and-sufficient 
condition to exhibit diarrhoea.

● This provides evidence that protecting water springs in this manner has little effect on the 
development of diarrhoea in children in these populations 

Should we protect water springs in this manner?



Check out our paper to dive deeper arXiv:2109.01904

arXiv:219.0190
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• Which Playlists to update: which playlists Z “need” to be updated?

P(YX=update = engaged, YX=no update = not engaged | Z)

• New content to enjoy: If user Z listened to specific content and 
enjoyed it, which other content would they also have enjoyed?

P(YX=new content = engage | Y = engage, X = current content, Z)

And many more….

Examples of counterfactuals at Spotify



Conclusion

● Many interesting causal inference problems need to be solved to address important 
problems in industry and beyond, such as disentangling multiple treatments

● Range of counterfactual questions that yield invaluable insights beyond just average, or 
even heterogeneous, treatment effects

● Deep twin networks provide simple way to use ML to learn causal models and answer 
counterfactual questions

● Many more causal inference applications at Spotify beyond what we’ve discussed today

● We’re hiring, so get in touch if you’re interested!

ciaranl@spotify, or 
ciaran.lee@ucl.ac.uk


